Download 1M+ code from codegive.com/3f22d1a
creating an ai customer service chatbot can be a rewarding project that enhances user interaction on your website or application. in this tutorial, we will build a simple chatbot using python and the flask framework for the backend, and we'll use the openai api for the chatbot's natural language processing capabilities.
prerequisites
1. **python**: ensure you have python installed on your machine (preferably python 3.6 or higher).
2. **flask**: you can install flask using pip.
3. **openai account**: sign up for an openai account and get your api key.
4. **basic knowledge of html/css/javascript**: to create a simple frontend for our chatbot.
step 1: set up your environment
first, create a new project directory and set up a virtual environment:
```bash
mkdir ai_chatbot
cd ai_chatbot
python -m venv venv
source venv/bin/activate on windows use `venv\scripts\activate`
```
install flask and requests:
```bash
pip install flask requests
```
step 2: create the flask backend
create a file named `app.py` in your project directory and add the following code:
```python
from flask import flask, request, jsonify
import requests
app = flask(__name__)
api_key = 'your_openai_api_key' replace with your openai api key
openai_url = 'api.openai.com/v1/chat/completions'
def get_response_from_openai(user_message):
headers = {
'authorization': f'bearer {api_key}',
'content-type': 'application/json'
}
data = {
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": user_message}
]
}
response = requests.post(openai_url, headers=headers, json=data)
if response.status_code == 200:
return response.json()['choices'][0]['message']['content']
else:
return "sorry, i couldn't process your request."
@app.route('/chat', methods=['post'])
def chat():
user_message = request.json.get('message')
bot_response = get_response_from_openai(user_message)
...
#AIChatbot #CustomerService #numpy
AI chatbot tutorial
customer service chatbot
build chatbot guide
chatbot development
AI customer support
conversational AI
chatbot design
natural language processing
machine learning chatbot
customer interaction automation
chatbot implementation
AI for customer service
chatbot best practices
user experience chatbot
chatbot programming
コメント