Loading...
「ツール」は右上に移動しました。
利用したサーバー: natural-voltaic-titanium
21566いいね 1213163回再生

Regularization Part 1: Ridge (L2) Regression

Ridge Regression is a neat little way to ensure you don't overfit your training data - essentially, you are desensitizing your model to the training data. It can also help you solve unsolvable equations, and if that isn't bad to the bone, I don't know what is.

This StatQuest follows up on the StatQuests on:
Bias and Variance
   • Machine Learning Fundamentals: Bias a...  

Linear Models Part 1: Linear Regression
   • Linear Regression, Clearly Explained!!!  

Linear Models Part 1.5: Multiple Regression
   • Multiple Regression, Clearly Explaine...  

Linear Models Part 2: t-Tests and ANOVA
   • Using Linear Models for t-tests and A...  

Linear Models Part 3: Design Matrices
   • StatQuest: Linear Models Pt.3 - Desig...  

Cross Validation:
   • Machine Learning Fundamentals: Cross ...  

For a complete index of all the StatQuest videos, check out:
statquest.org/video-index/

If you'd like to support StatQuest, please consider...

Patreon: www.patreon.com/statquest
...or...
YouTube Membership: youtube.com/channel/UCtYLUTtgS3k1Fg4y5tAhLbw/join

...buying one of my books, a study guide, a t-shirt or hoodie, or a song from the StatQuest store...
statquest.org/statquest-store/

...or just donating to StatQuest!
www.paypal.me/statquest

Lastly, if you want to keep up with me as I research and create new StatQuests, follow me on twitter:
twitter.com/joshuastarmer

0:00 Awesome song and introduction
1:25 Ridge Regression main ideas
4:15 Ridge Regression details
10:21 Ridge Regression for discrete variables
13:24 Ridge Regression for Logistic Regression
14:12 Ridge Regression for fancy models
15:34 Ridge Regression when you don't have much data
19:15 Summary of concepts

Correction:
13:39 I meant to say "Negative Log-Likelihood" instead of "Likelihood".

#statquest #regularization

コメント