Loading...
ใ€Œใƒ„ใƒผใƒซใ€ใฏๅณไธŠใซ็งปๅ‹•ใ—ใพใ—ใŸใ€‚
ๅˆฉ็”จใ—ใŸใ‚ตใƒผใƒใƒผ: natural-voltaic-titanium
0ใ„ใ„ใญ 25ๅ›žๅ†็”Ÿ

๐— ๐—ฎ๐˜€๐˜๐—ฒ๐—ฟ๐—ถ๐—ป๐—ด ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐——๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—บ๐—ฒ๐—ป๐˜ ๐—ฎ๐—ป๐—ฑ ๐—ฃ๐—ฟ๐—ฒ๐—ฑ๐—ถ๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—ฆ๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ฐ๐—ฒ๐˜€ ๐—ถ๐—ป ๐— ๐—ฎ๐—ฐ๐—ต๐—ถ๐—ป๐—ฒ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด

In this video, we dive deep into the crucial phase of the machine learning lifecycle โ€” Model Deployment and Prediction Service. This stage is all about taking your developed model and turning it into a real-world application, ready to make predictions that matter.

๐—ฌ๐—ผ๐˜‚โ€™๐—น๐—น ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป:

โ€ข The process of ๐—ฑ๐—ฒ๐—ฝ๐—น๐—ผ๐˜†๐—ถ๐—ป๐—ด ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น๐˜€ and making them accessible in production environments.
โ€ข The difference between ๐—ฏ๐—ฎ๐˜๐—ฐ๐—ต ๐—ฝ๐—ฟ๐—ฒ๐—ฑ๐—ถ๐—ฐ๐˜๐—ถ๐—ผ๐—ป and ๐—ผ๐—ป๐—น๐—ถ๐—ป๐—ฒ ๐—ฝ๐—ฟ๐—ฒ๐—ฑ๐—ถ๐—ฐ๐˜๐—ถ๐—ผ๐—ป, and when to use each.
โ€ข How ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น ๐˜€๐—ฒ๐—ฟ๐˜ƒ๐—ถ๐—ป๐—ด works and how to expose your modelโ€™s predictions through an endpoint.
โ€ข Techniques for ๐—บ๐—ผ๐—ฑ๐—ฒ๐—น ๐—ฐ๐—ผ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐—ผ๐—ป to reduce size and improve efficiency for deployment.
โ€ข Key decisions about deploying models on the ๐—ฐ๐—น๐—ผ๐˜‚๐—ฑ ๐˜ƒ๐˜€. ๐—ฒ๐—ฑ๐—ด๐—ฒ ๐—ฑ๐—ฒ๐˜ƒ๐—ถ๐—ฐ๐—ฒ๐˜€, and their impact on performance.
โ€ข How to optimize ๐—ถ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ for faster, more efficient predictions.
โ€ข The potential failures in machine learning systems like ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ฑ๐—ฟ๐—ถ๐—ณ๐˜, ๐—ฒ๐—ฑ๐—ด๐—ฒ ๐—ฐ๐—ฎ๐˜€๐—ฒ๐˜€, and ๐—ณ๐—ฒ๐—ฒ๐—ฑ๐—ฏ๐—ฎ๐—ฐ๐—ธ ๐—น๐—ผ๐—ผ๐—ฝ๐˜€, and how to address them.

If youโ€™re looking to understand the deployment process in machine learning and learn how to make your models work efficiently in real-wo

ใ‚ณใƒกใƒณใƒˆ