Data cleaning is one of the most crucial steps in any data project, but messy datasets with missing values, inconsistent formats, and duplicates can derail your analysis. Learn how to tackle these challenges efficiently using powerful Pandas one-liners in Python!
In this video, we walk you through practical, reusable tricks presented in a Jupyter Notebook. You'll discover how to:
Handle missing data: Drop rows/columns with NaN values or fill them using various methods (single value, forward fill, backward fill, per column).
Remove duplicate rows/columns: Identify and remove exact duplicates or duplicates based on specific columns.
Replace specific values: Easily swap out values based on criteria.
Change data types: Ensure your data is in the correct format for analysis.
Trim whitespace: Clean up messy string data.
Map and replace values: Transform numerical codes into readable labels.
Handle outliers: Cap extreme values to prevent skewing your analysis.
Whether you're a beginner or a pro, these compact lines of code are incredibly powerful for getting your dataset ready for analysis with minimal effort. Stay tuned for a future video where we explore using AI tools like Pandas AI Library to clean data without writing code!
#Pandas #DataCleaning #Python #DataAnalysis #DataScience #PandasTutorial #DataManipulation #MissingData #Duplicates #Outliers #JupyterNotebook
Timestamps:
0:00 - Intro: Importance of Data Cleaning
0:59 - Creating a Messy DataFrame
1:32 - Handling Missing Data (dropna())
1:50 - Drop Rows with Any Missing Value
2:49 - Drop Columns Where All Values Are NaN
3:39 - Drop Rows Based on Specific Columns (using thresh)
4:38 - Drop Rows Based on Specific Columns (using subset)
5:40 - Handling Missing Data (fillna())
5:49 - Fill All Missing Values with a Single Value (0)
6:15 - Forward Fill (ffill)
7:10 - Backward Fill with Limit (bfill)
8:34 - Fill with Different Values per Column
9:19 - Removing Duplicate Values (drop_duplicates())
9:29 - Drop Full Row Duplicates
9:52 - Drop Duplicates Based on One Column (subset)
10:44 - Keep Last Duplicate
12:18 - Replacing Specific Values Using replace()
13:03 - Type Conversion - Changing Data Types Using astype()
13:46 - Trim Whitespace from Strings Using str.strip()
14:38 - Mapping & Replacing Values (using map())
15:37 - Handling Outliers (Using clip())
16:51 - Apply a Function Using Lambda
17:49 - Conclusion
If you found this helpful, don't forget to Like, Share, and Subscribe! Comment below on what you'd like us to cover next.
Become a GenAI Expert: Check our FREE Courses → analyticsvidhya.com/courses
コメント