Loading...
「ツール」は右上に移動しました。
利用したサーバー: wtserver1
137いいね 5,184 views回再生

Explain dimensionality reduction by singular value decomposition!

This video is about singular value decomposition (SVD)!

Previous:    • 主成分分析(PCA)の仕組みを理解して動かしてみよう  

Code: https://k-datamining.github.io/dm-boo...
-----------------------------
SNS
twitter: https://twitter.com/intent/follow?scr...
Blog: https://ks-memo.hatenadiary.com/
Slide material: https://speakerdeck.com/k_study
-----------------------------
Table of Contents
0:00 Title
0:51 Singular Value Decomposition
1:23 Diagonal components of matrix Σ (singular values)
2:23 Mechanism of dimensionality reduction
3:07 Overview of the experiment: Approximating images with low-rank matrices
3:53 Trying to get the code to work
5:30 Image of matrix V
6:13 Summary
-----------------------------
Special Thanks (voice)
VOICEVOX:Tsumugi Kasukabe
https://tsukushinyoki10.wixsite.com/k...
-----------------------------
References
https://docs.scipy.org/doc/scipy/tuto...
https://ja.wikipedia.org/wiki/%E7%89%...
-----------------------------
BGM
Afternoon Cafe written by Shiro Takahashi
https://dova-s.jp/bgm/play5954.html
-----------------------------
About this channel
I'll be posting information about machine learning and data science once a week! Please subscribe to my channel if you like. Please subscribe to my channel if you like. It will be very encouraging.

#Machine Learning #Data Analysis #Python

コメント