Loading...
「ツール」は右上に移動しました。
利用したサーバー: wtserver1
8いいね 12 views回再生

All About the MA Model | Moving Average in Time Series | Machine Learning Explained Simply!

Welcome to this beginner-friendly guide on the Moving Average (MA) model — a powerful tool used in time series forecasting and machine learning!

In this video, you'll learn:
📌 What time series data is and why it matters
📌 How the MA model works and when to use it
📌 The difference between MA and AR models
📌 Real-world applications across finance, weather, retail & more
📌 A step-by-step Python code demo of MA(1) model

Whether you're a data science student, a machine learning enthusiast, or just curious about forecasting models, this video is your quick and clear entry point into understanding the MA(q) model.

💻 Python Code Used in Video:
✔️ Uses statsmodels, numpy, and matplotlib
✔️ Fits an MA(1) model
✔️ Forecasts and visualizes future data points

💻 Try the Code Yourself
Open and run the full notebook on Google Colab 👉
' ' ' '
import numpy as np
import pandas as pd
from statsmodels.tsa.arima.model import ARIMA
import matplotlib.pyplot as plt

Simulate a simple MA(1) process
np.random.seed(42)
errors = np.random.normal(0, 1, 100)
data = [0] * 100
theta1 = 0.7
for i in range(1, 100):
data[i] = errors[i] + theta1 * errors[i-1]

Create a Pandas Series
series = pd.Series(data)

Fit an MA(1) model
order=(0,0,1) means AR(0), I(0), MA(1)
model = ARIMA(series, order=(0,0,1))
model_fit = model.fit()

print(model_fit.summary())

Make a forecast
forecast = model_fit.predict(start=len(series), end=len(series)+4)
print("\nForecasted values:")
print(forecast)

Plotting (optional)
plt.figure(figsize=(10, 6))
plt.plot(series, label='Original Series')
plt.plot(range(len(series), len(series) + len(forecast)), forecast, label='Forecast', linestyle='--')
plt.title('MA(1) Model Forecast')
plt.xlabel('Time')
plt.ylabel('Value')
plt.legend()
plt.grid(True)
plt.show()
' ' ' '
🔔 Subscribe for more machine learning videos, student-friendly explanations, and coding walkthroughs!
💬 Have questions? Drop them in the comments—I’d love to help!

#MachineLearning #TimeSeries #MovingAverage #DataScience #MAmodel #Forecasting #PythonML #StudentFriendly

コメント